Ch 12 Résolutions d'inéquations

1°/ Résoudre une inéquation du 1er degré

1.1 Définition :

Résoudre une inéquation dans un ensemble de réels I, c'est trouver tous les réels de I vérifiant l'inégalité donnée.

1.2 Pré requis : résoudre une inéquation du 1^{er} degré

Exemple: -3 est-il solution de 2x - 5 > 0?

 $2\times3-5=1>0$ donc 3 est solution de 2x-5>0

- 1 est-il solution de 2x - 5 > 0?

 $2 \times 1 - 5 = -3 > 0$ donc 1 n'est pas solution de 2x - 5 > 0.

Rappel-Règles:

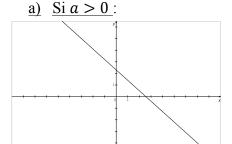
- Ajouter ou soustraire un même nombre à chaque membre d'une inégalité ne change pas le sens de cette inégalité.
- Si a > 0, multiplier ou diviser par a les deux membres d'une inégalité ne change pas le sens de l'inégalité.
- Si a < 0, multiplier ou diviser par a les deux membres d'une inégalité change le sens de l'inégalité.

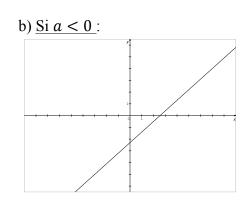
Exemple: Résoudre 8 - 5x > 2 - x sur R

Résoudre $x + 3 \le 2$ sur R

2°/Résoudre une inéquation produit ou quotient :

2.1 Signe de « ax + b » (rappel fct affine)





$$ax + b = 0$$
 pour $x = -\frac{b}{a}$

Quel est le signe de ax + b avant de s'annuler? Et après?

Si a > 0, la fonction affine $x \to ax + b$ est croissante. (cf cours fcts référence) Donc, on a le tableau de signe suivant :

x	$-\infty$	$-\frac{b}{a}$	+0	∞
Signe de $ax + b$	_	0	+	

Si a < 0, la fonction affine $x \rightarrow ax + b$ est décroissante.

Donc, on a le tableau de signe suivant :

<u>x</u>	$-\infty$		$-\frac{b}{a}$		$+\infty$
Signe de $ax + b$		+	0	_	

2.2 Signe d'un produit ou d'un quotient de facteurs :

On rappelle dans le tableau ci-contre la règle des signes, pour obtenir le signe d'un produit ou d'un quotient :

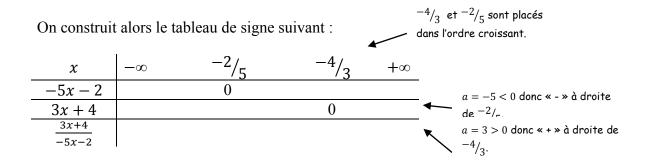
\boldsymbol{x}	$-\infty$				$+\infty$
Signe de a		+	+	_	_
Signe de b		+	_	+	_
Signe de $a \times b$ ou de					_
$a \times b$ ou de		+	_	_	+
$a_{/b}$					

Application: Dressons le tableau de variation de $\frac{3x+4}{-5x-2}$:

On a
$$3x + 4 = 0$$
 et $-5x - 2 = 0$

.....

.....



2.3 Méthode pour Résoudre une inéquation qui n'est pas du 1^{er} degré :

- 1) Transposer dans un même membre pour avoir une inéquation avec un second membre nul.
- 2) Factoriser le plus possible.
- 3) Construire le tableau de signe.(Attention aux valeurs interdites dans le cas d'un quotient)
- 4) Conclure par la lecture de la dernière ligne du tableau.

Application Résoudre, dans R, $(2x - 1)^2 \ge (2x - 1)(5x + 2)$

$$(2x-1)^2 \ge (2x-1)(5x+2)$$

.....

.....

.....

.....

On construit le tableau de signe correspondant :

<u> </u>	$-\infty$	-1	$^{1}/_{2}$	$+\infty$
2x - 1				
-3x - 3				
(2x-1)(-3x-3)				

Par lecture du tableau, on a donc l'ensemble des solutions qui est $S = [-1; \frac{1}{2}]$