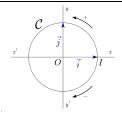
1. Le cercle trigonométrique

Définition : Dans le plan muni d'un repère orthonormé(O,I,J) et orienté positivement (sens inverse des aiguilles d'une montre), le **cercle trigonométrique** est le cercle de centre 0 et de rayon 1.

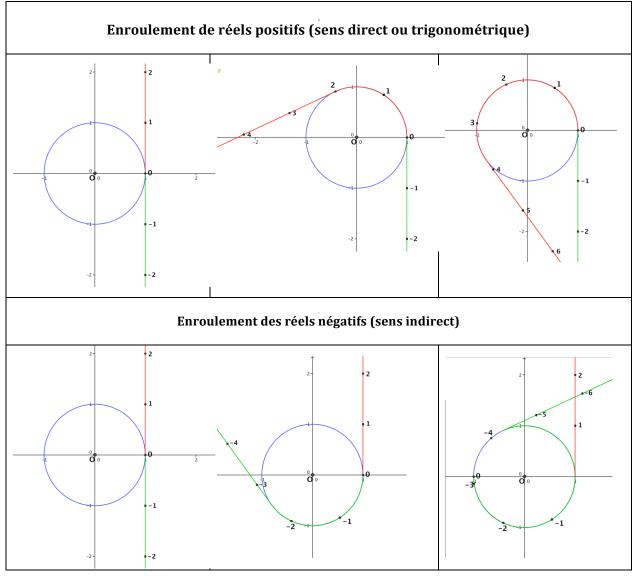


2. Enroulement de la droite

Dans le plan muni d'un repère orthonormé (O,I,J), on considère le cercle trigonométrique.

Soit *d* la droite perpendiculaire à l'axe des abscisses passant par le point (1; 0).

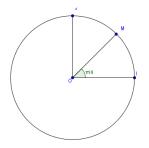
En «enroulant» cette droite autour du cercle trigonométrique, on obtient une correspondance entre un point de la droite et un unique point du cercle.



LFM – Mathématiques – 2^{nde}

M étant un point du cercle trigonométrique, on peut définir la mesure de l'angle \widehat{IOM} comme la longueur de l'arc IM (divisée par la longueur 1, le rapport est donc sans unité), exprimée dans une nouvelle unité de mesure d'angles : **le radian (rad).**

Un tour complet correspond à 360°, à une longueur de 2π et à une mesure d'angle de 2π rad. Un demi-tour correspond à 180°, à une longueur de π et à une mesure d'angle de π rad. Un quart de cercle correspond à 90°, à une longueur de $\frac{\pi}{2}$ et à une mesure d'angle de $\frac{\pi}{2}$ rad.

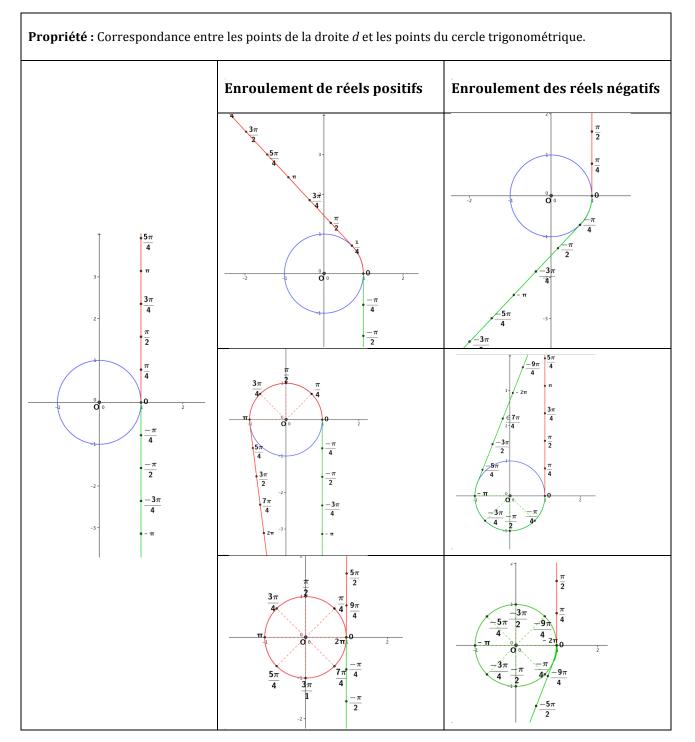


Il y a proportionnalité entre les deux unités de mesures d'angles, degrés et radians. Il y a proportionnalité entre la mesure d'angle en degrés et la longueur de l'arc.

Exemple: convertir 72° en radians:

Mesure en degrés	180	72
Mesure en radians	π	$\frac{72 \times \pi}{180} = \frac{2}{5}\pi$

On considère par la suite la longueur de l'arc (nombre réel), plutôt que son angle en radians.



<u>Propriété</u>: Soit $x \in \mathbb{R}$ et $k \in \mathbb{Z}$. Sur le cercle trigonométrique, le point M d'abscisse x et les points P_k d'abscisses $(x + k \times 2\pi)$ sont confondus.

<u>Exemple</u>: $\frac{3\pi}{2}$ et $\frac{19\pi}{2}$ sont-ils représentés par le même point sur le cercle trigonométrique?

$$\frac{19\pi}{2} - \frac{3\pi}{2} = \frac{16\pi}{2} = 8\pi = 4 \times 2\pi$$

Donc $\frac{3\pi}{2}$ et $\frac{19\pi}{2}$ sont représentés par le même point sur le cercle trigonométrique.

3. Cosinus et sinus d'un nombre réel

Définitions:

Pour tout nombre **réel** x considérons le point N de la droite d d'abscisse x, ce point correspond au point A sur le cercle trigonométrique.

Le **cosinus d'un nombre réel** *x* est <u>**l'abscisse du point** *A*</u> ; cette valeur se note cos *x*.

La fonction cosinus est définie sur $\mathbb R$ par :

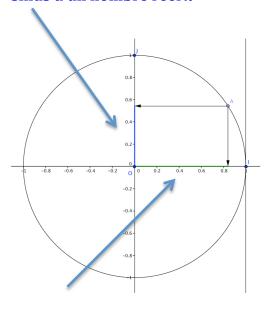
$$cos: x \mapsto \cos x$$

Le **sinus d'un nombre réel** *x* est **l'ordonnée du point A** ; cette valeur se note sin *x*.

La fonction sinus est définie sur \mathbb{R} par :

$$sin: x \mapsto \sin x$$

sinus d'un nombre réel x



cosinus d'un nombre réel x

Propriétés: Pour tout nombre réel *x*, on a :

$$-1 \le \cos x \le 1 \qquad \sin(-x) = -\sin x$$

$$\cos^2 x + \sin^2 x = 1$$

$$-1 \le \sin x \le 1 \qquad \cos(-x) = \cos x$$

4. Lien avec le cosinus et le sinus dans un triangle rectangle

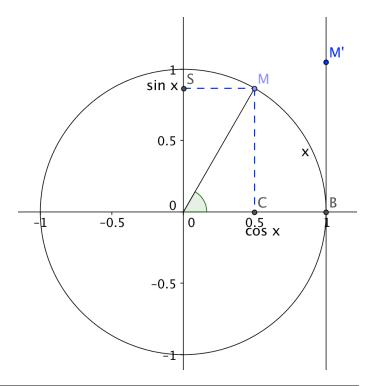
Dans un triangle COM rectangle en C tel que OM = 1, on a :

•
$$\cos \widehat{COM} = \frac{\text{longueur du côté adjacent}}{\text{longueur de l'hypoténuse}}$$

$$= \frac{OC}{OM} = OC = \cos x$$

•
$$\sin \widehat{COM} = \frac{\text{longueur du côté opposé}}{\text{longueur de l'hypoténuse}}$$

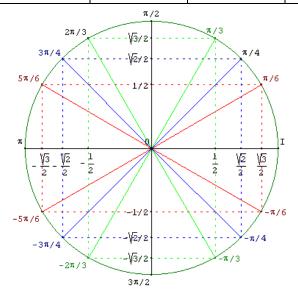
$$= \frac{MC}{OM} = MS = \sin x$$



Propriété : Pour tout nombre réel x compris entre 0 et $\frac{\pi}{2}$, les définitions données pour le cosinus et le sinus d'un nombre réel (paragraphe 3) donnent les mêmes valeurs que les définitions du cosinus et du sinus dans le triangle rectangle.

Valeurs particulières :

x en degrés	0°	30°	45°	60°	90°
x longueur de l'arc	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1



LFM – Mathématiques – 2^{nde}