67. Partie I

1.
$$\mathcal{D} = [-3;3]$$
.

2. Le maximum de f sur [-3;3] est 5, atteint en x = 3 et x = -3.

Le minimum de f sur [-3;3] est -1, atteint en x = 0.

3.
$$f(0) = -4$$
.

2 admet deux antécédents par f : -2,4 et 2,4.

4.
$$f(x) = -1$$
: $\mathcal{G} = \{-1,7;1,7\}$.

$$f(x) = 0 : \mathcal{G} = \{-2; 2\}.$$

5.
$$f(x) \ge -3$$
: $\mathcal{G} = [-3; -1] \cup [1; 3]$.

6.	Х	- 3	0	3
	f (x)	5	- 4	5

7.	X	– 3	- 2		2		3
	f(x)	+	Ó	_	Ó	+	

Partie II

8.
$$f(-1) = -3$$
; $f(0) = -4$; $f(\sqrt{2}) = -2$.

9.
$$f(x) = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = 2 \text{ ou } x = -2$$
.

2 et -2 sont les antécédents de 0 par f.

$$f(x) = 5 \Leftrightarrow x^2 - 4 = 5 \Leftrightarrow x^2 = 9 \Leftrightarrow x = 3$$

ou $x = -3$.

3 et -3 sont les antécédents de 5 par f.

$$f(x) = -5 \Leftrightarrow x^2 = -1$$
: impossible.

− 5 n'a pas d'antécédents par f.

$$f(x) = 1 \Leftrightarrow x^2 - 4 = 1 \Leftrightarrow x^2 = 5 \Leftrightarrow x = \sqrt{5}$$

- **68. 1.** f(x) = 0 : $\mathcal{S} = \{-1, 0, 3\}$, ensemble des abscisses des points d'intersection de la courbe avec l'axe des abscisses.
- $f(x) \le 0$: $\mathcal{G} = [-1; 0,3]$, ensemble des abscisses des points de la courbe situés sous l'axe des abscisses.
- f(x) = -1: $\mathcal{G} = \{-0,6;0\}$, ensemble des abscisses des points d'intersection de la courbe avec la droite d'équation y = -1.
- **2.** $f(x) = 3x 1 : \mathcal{S} = \{0; 0, 3\}.$
- **3.** $f(x) > 1 : \mathcal{G} = [-2; -1,2[\cup]0,6;1].$
- $f(x) = 8 : \mathcal{S} = \emptyset$.
- **4. a.** $(x+1)(3x-1) = 3x^2 x + 3x 1$ = $3x^2 + 2x - 1$ = f(x).
- **b.** $f(x) = 0 \Leftrightarrow (x+1)(3x-1) = 0$ $\Leftrightarrow x = -1 \text{ ou } x = \frac{1}{3},$
- donc $\mathcal{G} = \left\{ -1; \frac{1}{3} \right\}$.
- 5. $f(x) = 3x 1 \Leftrightarrow 3x^2 + 2x 1 = 3x 1$ $\Leftrightarrow 3x^2 - x = 0$ $\Leftrightarrow x(3x - 1) = 0$,
- donc $\mathcal{S} = \left\{0; \frac{1}{3}\right\}$.

69. Partie I

- **1.** Le maximum de f sur [-7;3] est 2,2, atteint pour x=3 et x=-7 et le minimum est -4 atteint pour x=-2.
- **2.** f(0) = -3; f(-4) = -3.
- **3.** 3 admet deux antécédents par f qui sont 4 et 0.
- 4 admet 1 antécédent par f qui est 2.

4.	X	- 7	-2	3
	f	2,2	1 - 4	2,2

5.
$$x -7 -6 2 3$$

 $f(x) + 0 - 0 +$

6.
$$f(x) = 1 : \mathcal{S} = \{-6,5;2,5\}.$$

7.
$$f(x) > -3 : \mathcal{S} = [-7; -4[\cup]0; 3].$$

8.
$$f(x) = -2 : \mathcal{S} = \{a; b\}$$
 avec :

$$-5 < a < -4$$
 et $0 < b < 1$.

Partie II

9.
$$f(-4) = 4 - 4 - 3 = -3$$
; $f(0) = -3$.

10.
$$f(x) = -3 \Leftrightarrow x\left(\frac{1}{4}x + 1\right) = 0$$

 $\Leftrightarrow x = 0 \text{ ou } x = -4,$

donc $\mathcal{G} = \{-4; 0\}$.

11.
$$f(x) = -4 \Leftrightarrow \frac{1}{4}x^2 + x + 1 = 0$$

$$\Leftrightarrow \left(\frac{1}{2}x + 1\right)^2 = 0$$

$$\Leftrightarrow x = -2$$

donc
$$\mathcal{G} = \{-2\}$$
.